A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles

نویسندگان

  • Fabiana Arduini
  • Viviana Scognamiglio
  • Corrado Covaia
  • Aziz Amine
  • Danila Moscone
  • Giuseppe Palleschi
چکیده

In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (-50 mV vs. Ag/AgCl), thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethyl)amine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability.

The promising advantages of Prussian Blue (PB) as catalyst and of the thick film screen printing technology have been combined to assemble sensors with improved characteristics for the amperometric determination of H(2)O(2). PB-modified screen printed electrodes were applied to detect H(2)O(2) at an applied potential of -0.05 V versus the internal screen printed Ag pseudoreference electrode, sh...

متن کامل

Evaluation of Different Functionalized CNTs for Development of Choline Amperometric Biosensor

Choline oxidase (ChOx) was chosen as a model enzyme for evaluating the performance of CNTs’ functional groups for development of enzyme electrodes. CNTs were functionalized with carboxylic acid, amine or amide groups. Carboxylic acid, amine and amide functionalized CNTs were obtained by acid treatment, ethylenediamine or tetraethylenepentamine chemically modification and ammonia plasma treatmen...

متن کامل

Screen-printed Electrode Modified with Magnetic Core-shell Nanoparticles for Detection of Chlorpromazine

In the present study, magnetic core-shell manganese ferrite nanoparticles (MCMNP) were synthesized and used for construction of a magnetic core-shell manganese ferrite nanoparticles modified screen-printed carbon electrode (MCSNP-SPCE). Cyclic voltammetry was used to study the electrochemical behavior of chlorpromazine (CPZ) and its determination was conducted by applying square wave voltammetr...

متن کامل

Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles

A sensor for the simple and sensitive measurement of hydrogen peroxide has been developed which is based on screen printed electrodes (SPEs) modified with Prussian blue nanoparticles (PBNPs) deposited using piezoelectric inkjet printing. PBNP-modified SPEs were characterized using physical and electrochemical techniques to optimize the PBNP layer thickness and electroanalytical conditions for o...

متن کامل

Inkjet printed Prussian blue films for hydrogen peroxide detection.

An inkjet printing method is described to fabricate hydrogen peroxide (H(2)O(2)) sensors. Insoluble Prussian blue (PB) nanoparticles were dispersed in aqueous solvent, and were printed on screen printed carbon electrodes with a piezoelectric inkjet printer for H(2)O(2) detection. The electrochemical behavior of the printed sensors was studied by using cyclic voltammetry and chronoamperometry....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015